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The interface (or the surface phase) in an n-component fluid is stud ied on a model o f the dis­
continuity surface in continuum. Balance equations, equations for entropy production, pheno­
menologica l equations and hea t transfer equations are derived, which comprise bulk phase 
temperatures, the temperature of the interface (or the temperature of the surface phase), the 
surface heat conductivity coefficient and hea t transfer coefficients as explicit quantities. 

In many theoretical and technological problems in chemistry the necessity is encoun­
tered of studying transfer phenomena along and across a surface phase. In the 
phenomenological approach, this interface (or the surface phase) becomes a di scon­
tinuity surface, which lies inside the continuum representing the whole heterogeneous 
system. Common procedures, methods and results of the theory of continuum cannot 
be employed for the discontinuity surface or, more preci sely, they are applicable only 
if the starting axiomatic and mathematical basis is thoroughly revised. Recently, 
several attempts have been made l 

- 5 to formulate such a new basis both from the point 
of view of the nonequilibrium thermodynamics and the rational thermodynamics, 
resp. It appears that the physically most precise work is that by Bedeaux, Albano and 
MazurG

, who studied transfer phenomena at the interface between two immiscible 
fluids. Starting from their results, the author of this work has formulated a general 
mathematical? and axiomatic8 basis of the nonequilibrium thermodynamics of 
discontinuity surfaces in continuum. In the following paragraphs, this general theory 
will be used for studying the heat tran sfer in a system containing two n-component 
viscous fluids or possibly two phases of one n-component fluid in the absence of 
chemical reactions, radiation and electromagnetic effects. 

In the following paragraphs, subsequently basic balance equations among quanti­
ties on the discontinuity surface in viscoelastic medium will be derived, transformed 
to the problem of viscous fluid and further used to derive the balance of the internal 
energy. Employing the local equilibrium hypothesis, we replace in this balance the 
internal energy by entropy, which is a common procedure in the nonequilibrium 
thermodynamics, The expression for the entropy production will be obtained by 
comparing the resulting equation with the entropy balance and it will further be used 
to identify existing thermodynamic fluxes and forces. By using the linearity hypothesis 
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1618 Vodak: 

and other axioms from the nonequilibrium thermodynamics, phenomenological 
equations will be formulated and substituted into the equation of heat continuity. 
Thus, an equation of heat conductivity will be obtained, which will contain as expli­
cit variables only temperatures and material "constants". 

Starting Relations 

A viscous fluid can be considered as a special case of viscoelastic medium9
. The 

following set of balance equations8 is satisfied on the discontinuity surface (from now 
on denoted as OS) in a viscoelastic medium 

(1) 

ae! d' s, [J] 0 - + IV eava + aN = , at (2) 

(n . (vS 
- v:» = 0 , 

aeSv' - + div {esvs @ v' - p.} + [iNv - p] = 0, 
at (3) 

[n. P'] = 0, 

p=~, M 

aele" - + div {esesvs - Cps . VS
] + jQ} + [iNe - (p . v) + iQN] = 0, (5) at 

(n . {Cps . vs] - jb}) = 0, 

ae's' -- + div {ess'v' + j:} - as + [iNS + iSN] = 0, at (6) 

(n .j:) = 0, 

where [ ] denotes the jump of the enclosed quantity at OS: [Y] = y+ - Y- (Y+ 
or Y- is the quantity measured in the bulk phase at the positive or negative side of 
DS), the subscript N(T) denotes the normal (tangential) component of a vector, 
n is unit outer normal to OS (in our case it is oriented from the negative to the positive 
side of OS), eS{e±) is the surface (volume) density of the mixture - dim. ML- 2 

Collection Czechoslov. Chern . Commun. [Vol. 45] [1980] 



Heat Transfer between Two Fluid Phases 1619 

(ML- 3
) (where M is mass, L length, Ttime and. temperature), e:(en is the surface 

(volume) density of component IX - dim. MC z (ML- 3
), v' (v±) is the barycentric 

surface (volume) velocity - dim. LT- 1 (LT - 1
) , v~ (vn is the surface (volume) velocity 

of component IX - dim. LT- 1 (LT - 1
) , J± is the interphase mass flux of the mixture: 

(7) 

J; is the interphase mass flux of component IX: 

(8) 

P' (P±) is the "surface" (" volume") stress tensor - dim. MT- z (MC 1 T- Z), which 
is given by 

(9) 

where the subscript R(D) denotes the reversible (dissipative) part of the tensor, p± = 
= [n. P±] is the stress vector, ,..., denotes the transposed tensor, e" (e±) is the specific 
total surface (volume) energy: 

(10) 

u" (u ±) is the specific surface (volume) internal energy - dim. L2T- Z
), jo. (jJ) is the 

"surface" ("volume") heat flux - dim. MLT- 3 (MT- 3
), s· (s±) is the specific surface 

(volume) entropy - dim. L2T - 2 .-1 (eT- Z .-1), j: (js±) is the "surface" ("volume") 
flux of entropy - dim. MLT- 3 .-1 (MT- 1 .-1): 

.• 1 (.s ". ") J. = r JQ - 7 /1ala , (11) 

.± 1 (.± ,,± .±) 
J. = T± JQ - 7 /1a Ja , 

T S (T±) is the surface (volume) temperature, /1: (/1;) is the surface (volume) chemical 
potential - dim. LZT- z (L2 T- 2

) , j! (jn is the "surface" ("volume") diffusion flux: 

(12) 

cr' is the surface entropy production - dim. MT- 3 • - 1, ( . ) denotes the scalar product 
of two vectors, is the dyadic product of two vectors, [.] is the product of a vector 
and a tensor and (:) is the scalar product of two tensors. 
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Eqs (1), (2)1' (3)1' (4), (5)1' (6)1 are balance equations of the mass of the mixture, 
the mass of the component, the momentum of the mixture, the moment of momentum 
of the mixture, the total energy of the mixture and the entropy of the mixture, resp. 
(symbol (2)1 refers to the first equation from the set denoted as (2) etc.). Conditions 
(2h, (3)2' (5)z, (6)2' which follow from the generalized integral theorems 8

, guarantee 
that the surface quantities are defined at (two-dimensional) DS. From condition 
(2)2 and from definition (12)1 it follows that 

(n .j~) = 0, (13) 

and from conditions (3)2' (4), (5)z: 

(n .jQ) = O. (14) 

If we define the "surface" material derivative by 

Sd* a* 
- = - + (VS 

• grad *) 
dt at (15) 

(where the symbol * represents an arbitrary variable), then we obtain from balance 
(1) for an arbitrary quantity XS the relation 

?Q'X' + div Q'X'v' = QS sdX
s 

_ XS[JN] . 
at dt 

(16) 

The mass balance equation of the mixture, (1), can be transformed to the form of 
the balance equation of the specific area of DS. It holds 

(17) 

where b is the specific area. From Eqs (1), (17) it follows 

d· , b- 1 sdb b[J] lVV = - - N. 
dt 

(18) 

Balance equation (2) can be rearranged to read 

(19) 

where cS = Q~/Qs is the mass fraction. 
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From relations (1), (2)1' and (19) (and from the superposition principle) it follows 

eS 
= I e~, e'v' = I Q~ IJ~ , 

I [JaN] = [J N]' Ij! = 0 . (20) 
a a 

Performing the scalar multiplication of Eq. (3)1 by velocity v', we obtain the balance 
of the kinetic energy. By subtracting it from Eq. (5)1' the following relation results 

ih!'u S 

- - + div {gSusv' + P} - (PS : grad IJ') + at Q 

(21) 

which is the balance equation of the internal energy. 

In the axiomatic structure of the nonequilibrium thermodynamics, balance (2i) 
is supplemented with an equation expressing the local equilibrium hypothesis. In the 
case of a DS in a viscoelastic mixture, this hypothesis is represented by the relations8 

[(RP , (v - V
S
))] + [IN(U - Ts - I caPa)] -

" 
(22) 

Equation oj Heat Conduction in a Viscous Fluid 

From a formal point of view, the model of viscoelastic medium differs from that of 
viscous fluid only in the expression of the reversible part of the stress tensor. In the 
case investigated it holds 

(23) 
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where /t± is pressure in the bulk phase, y is surface tension and 1 is unit tensor. 
At a thermodynamic equilibrium, we can also use the relations 

u - Ts - L:c~Jl~ + /tv = 0 , 

u" - T"s' - L:c!Jl~ - yb = 0 , (24) 
~ 

where v = e -1 is specific volume. 

Substituting relations (7), (16), (18) and (23) into Eq. (21), we obtain the balance 
equation of the internal energy at DS in a viscous n-component fluid: 

• "due S[J] d··s (PS d S) • "db b[J ] e -- - U N + IV lQ - D : gra v - Yfl - + Y N + 
dt dt 

Here, P' (DP±) corresponds to the viscous part of the surface (volume) stress tensor 
and oP± = [n . DP±J. 

Similarly, if we rearrange the local equilibrium equation (22)1 with the help of 
relations (7), (16), (18), (23), (24), we obtain -- -

"d S "d S sdb "d • eS~ - e"T"~ - eSy- - eSL:Jl!~ = o. 
dt dt dt ~ dt 

(26) 

Now, if we rearrange Eq. (26) with the help of relations (7), (8), (12), (19), (20), (24) 
and (22)2.3 and insert the result into balance (25), we have 

eS ":;s _ SS[ J N] + div ~ UQ - ~j~Jl~} + 

+ U'Q . (T"t 2 grad T") + LU~. grad Jl~( T"t 1) -
~ 

(27) 
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By comparing balance (6)1 and relation (27) (see also (11), (15), (16)), it is obvious 
that the entropy production assumes the form 

(IS = ( Tst 1 (oPs: grad VS
) + (Tst1 [(oP. (v - VI))] -

- (iQ . (T't2 grad T') - ,[(j! . grad J1!(T't 1) + 

In the following we shall limit ourselves to the problem of "pure" heat conduction 
along and across the DS. Therefore we can assume that 

(29) 

In this case, relation (28) reduces to 

(IS = -(jQ. (T't2 grad TO) + 

(30) 

where < ) denotes the "mean value" of a quantity at DS: <Y) = t(Y+ + Y-). 
In agreement with condition (14), only the tangential component of heat flux is present 
in the first term of Eq. (30). Because of that, the scalar product is affected only by the 
tangential component of the temperature gradient. The flux jQ possesses a vector 
character and it follows from condition (14) that its direction is parallel with the DS. 
The remaining two scalar fluxes, VQN] and GQN ) ' pass through the interface. 

It has been shown in ref. s that axioms from the nonequilibrium (Onsager) thermo­
dynamics can be used even in the case of a two-dimensional region. From the linearity 
principle and from the principles of material and time reversal invariance it follows 

[jQN] = Ll { (~) - ~} + L2 [~ ] , 

GQN) = L2 {(~) -~} + L3 [~l 
Collection Czechoslov. Chern. Commun. [Vol. 45] [1980] 

(31) 



1624 Vodak: 

where A' is the surface heat conductivity coefficient and L l , Lz, L3 are heat transfer 
coefficients. 

A natural consequence of assumptions (29) is a constant magnitude of the material 
volume and of the interfacial area. Further it follows from Eqs (29) and (15) that 
'd*/dt = iJ,.. /ot. By taking into account that under these assumptions it holds 

"d uS/dt = C
S oT"/o t , 

(where C
S is the "surface" specific heat at constant volume and area), Eq. (25) assumes 

the form 

• soTs d" s [ . ] 0 e c - + IV iQ + JQN = . 
ot 

(32) 

Now, if we insert phenomenological equations (31)1,2 into relation (32), we obtain 

~: - a" !l T S + L* {I ~) - ~} + L~ [~] = 0 , at 1 \T ys T 
(33) 

where as = AS/escs is the surface temperature conductivity coefficient, L~ , 2 = L1.l /e'C· 
are reduced heat transfer coefficients and !l is the Laplace operator. 

DISCUSSION 

Let us first try to explain the meaning of the surface quantities. The following basic 
model concept was employed in6

-
s. Let us have a time-dependent material volume 

V(t), which is divided by the discontinuity surface B(t) into two parts (phases) VI(t) 
and VIl(t). The motion of area B(t) is represented by the relation f(r , t) = 0 (where r 
is the position vector). Consequently, phase VI corresponds to the region f(r, t) > 0 
and phase Vll to f(r, t) < O. 

If a certain local property X (an intensive parameter) of a material is measured, 
the value X+(r, t) is obtained at position r in the regionf > 0, X-(r, t) for r in the 
region f < 0 and, finally, the surface property XS(r, t) for positions on the surface 
B(t) i.e. , for r in the regionf(r, t) = O. Summarizing it, we can write 

X = X + v X - v Xs , 

where v denotes disjunction. In other words, the surface quantities are identical with 
those which would actually be measured by a local probe on the area B(t). Differences 
between dimensions of some properties of the same type are also determined by the 
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method of measurement. For example, Q± is measured in accordance with the 
condition 

whereas for Q" it holds 

Q ± = lim 
f1M 

d v I. 1I ~ p f1 VI. II 

(!S = lim f1M , 
dlJ-Q f1B 

where f1M is mass and p(Q) denotes a certain point in the volume (on the surface). 
Conditions of the type (n. X S

) = 0 (or [n. XS] = 0) - e.g., (2h, (3h, (5)2 etc. -
guarantee that in a special coordinate system (with one axis oriented along n) all 
surface vector and tensor properties (except VS) reduce to two-component vectors 
and to two-by-two matrix tensors. This reduction corresponds also with the reduction 
of vector differential operations (for more details see, ref. 1 0). 

Now let us turn back to the problem of heat conduction through the interface, 
which is, in the system investigated, represented by Eq. (33), where the nonlinear 
source term, i.e., 

corresponds directly with temperature differences between the volume and surface 
phases. 

There are two special cases which are significant practicaIIy: 

a) the Waldmann approximation: 

In this case, the second term in relation (30) is equal to zero and the phenomenological 

equations reduce to the form 

(34) 

Eq. (34)2 is practically identical with Newton's cooling law. Relation (33) is in this 
case reduced to the usual parabolic equation. 

b) Constant surface temperature: r(r, t) = const. At this condition , it follows 

from Eq. (33) that 
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1626 Vodak 

Finally we would like to ' point to a certain ambiguousness in the expression for 
the entropy production, a', which is determined by conditions (22)2,3' In this paper 
we employed the relation ((Eqs (19), (22h)) 

for the modification of the local equilibrium (26). However, equally well we coul 
write 

This second method was discussed ins and it gave the entropy production where, 
besides the terms known from Eq. (28), there are also n scalar forces - (T"t I . 

. ( </la > - /l~) and n conjugated fluxes [ JaN] ' which - due to condition (20h - are 
not fully independent. 
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